Predictive Spelling With a P300-Based Brain-Computer Interface: Increasing the Rate of Communication

نویسندگان

  • David B. Ryan
  • G. E. Frye
  • G. Townsend
  • D. R. Berry
  • S. Mesa-G
  • Nathan A. Gates
  • Eric W. Sellers
چکیده

This study compared a conventional P300 speller brain-computer interface (BCI) to one used in conjunction with a predictive spelling program. Performance differences in accuracy, bit rate, selections per minute, and output characters per minute (OCM) were examined. An 8×9 matrix of letters, numbers, and other keyboard commands was used. Participants (n = 24) were required to correctly complete the same 58 character sentence (i.e., correcting for errors) using the predictive speller (PS) and the non-predictive speller (NS), counterbalanced. The PS produced significantly higher OCMs than the NS. Time to complete the task in the PS condition was 12min 43sec as compared to 20min 20sec in the NS condition. Despite the marked improvement in overall output, accuracy was significantly higher in the NS paradigm. P300 amplitudes were significantly larger in the NS than in the PS paradigm; which is attributed to increased workload and task demands. These results demonstrate the potential efficacy of predictive spelling in the context of BCI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a Brain Computer Interface (BCI) Speller System Based on SSVEP Signals

BCI is one of the most intriguing technologies among other HCI systems, mostly because of its capability of recording brain activities. Spelling BCIs, which help paralyzed people to maintain communication, are one of the striking topics in the field of BCI. In this scientific a spelling BCI system with high transfer rate and accuracy that uses SSVEP signals is proposed.In addition, we suggested...

متن کامل

Control of a 2-DoF robotic arm using a P300-based brain-computer interface

In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...

متن کامل

Evaluation of the Hidden Markov Model for Detection of P300 in EEG Signals

Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool  between humans and machines. Most brain-computer interface (BCI) systems use the P300 component,  which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for  detection of P300.  Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...

متن کامل

An Efficient ERP-Based Brain-Computer Interface Using Random Set Presentation and Face Familiarity

Event-related potential (ERP)-based P300 spellers are commonly used in the field of brain-computer interfaces as an alternative channel of communication for people with severe neuro-muscular diseases. This study introduces a novel P300 based brain-computer interface (BCI) stimulus paradigm using a random set presentation pattern and exploiting the effects of face familiarity. The effect of face...

متن کامل

A multimenu system based on the P300 component as a time saving procedure for communication with a brain-computer interface

The present study investigates a Brain-Computer Interface (BCI) spelling procedure based on the P300 evoked potential. It uses a small matrix of words arranged in a tree-shaped organization ("multimenu"), and allows the user to build phrases one word at a time, instead of letter by letter. Experiments were performed in two sessions on a group of seven healthy volunteers. In the former, the "mul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of human-computer interaction

دوره 27 1  شماره 

صفحات  -

تاریخ انتشار 2011